University of Cambridge

Course No.	Title	Instructor	Grade	Textbook	Subject Matter
NA	Elliptic Partial Differential Equations	N. Wickramasekera & Dr. G. Taujanskas	NA	 D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order. L. Simon, Schauder estimates by scaling. Calc. Var. & PDE, 5, (1997), 391–407. 	The course will provide a rigorous treatment, based on a priori estimates, of both classical and weak solutions to linear elliptic equations, focusing on the question of existence and uniqueness of solutions to the Dirichlet problem and the question of regularity of solutions. Specific topics include: • harmonic functions • maximum principles for general second order equations • Schauder estimates (via L. Simon's scaling argument) • the continuity method for existence of solutions • solvability of the Dirichlet problem in balls • Perron's method • divergence form operators • De Giorgi–Nash–Moser estimates • the Harnack theory • as time permits, a brief discussion of the quasilinear theory centred around the prototypical example of the Minimal Surface Equation.

NA	Stochastic Calculus and	Professor J. Miller	NA	1. R. Durrett Probability: theory and	This course will be an introduction to It ^o calculus and
	Applications			examples. Cambridge, 2010.	will aim to cover the following topics.
NA	Stochastic Calculus and Applications	Professor J. Miller	NA	 R. Durrett Probability: theory and examples. Cambridge, 2010. I. Karatzas and S. Shreve Brownian Motion and Stochastic Calculus. Springer, 1998. P. Morters and Y. Peres Brownian Motion. Cambridge, 2010. D. Revuz and M. Yor, Continuous martingales and Brownian motion. Springer, 1999. L.C. Rogers and D. Williams Diffusions, Markov Processes, and Martingales. Cambridge, 2000. 	 This course will be an introduction to It^o calculus and will aim to cover the following topics. Brownian motion. Existence and sample path properties. Stochastic calculus for continuous processes. Martingales, local martingales, semi-martingales, quadratic variation and cross-variation, It^o's isometry, definition of the stochastic integral, Kunita-Watanabe theorem, and It^o's formula. Applications to Brownian motion and martingales. L'evy characterization of Brownian mo-tion, Dubins-Schwartz theorem, martingale representation, Girsanov theorem, conformal invariance of planar Brownian motion, and Dirichlet problems. Stochastic differential equations. Strong and weak
					 Stochastic differential equations. Strong and weak
					solutions, notions of existence and
					uniqueness, Yamada-Watanabe theorem, strong Markov property, and relation to second
					order partial differential equations.
					 Stroock–Varadhan theory. Diffusions, martingale problems, equivalence with SDEs, ap-

					proximations of diffusions by Markov chains.
NA	Schramm-Loewner Evolutions	Dr. Y. Yuan	NA	 Wendelin Werner, Random planar curves and Schramm-Loewner evolutions, 2004. Also available at https://arxiv.org/abs/math/0303354. Gregory F. Lawler, Conformally Invariant Processes in the Plane, volume 114 of Mathe- matical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005. 	 The main goal of this course is to define and study SLE. The following topics will be covered: conformal maps: relations to planar Brownian motion, distortion estimates, and the Loewner differential equation, the definition of SLE, basic properties and their geometry, relation to the Gaussian free field.
NA	Distribution Theory and Applications	Dr. A. Ashton	NA	 F.G. Friedlander & M.S. Joshi, Introduction to the Theory of Distributions, C.U.P, 1998. M. J. Lighthill, Introduction to Fourier Analysis and Generalised Functions, C.U.P, 1958. G.B. Folland, Introdution to Partial Differential Equations, Princeton Univ Pr, 1995. 	The course will first cover the basic definitions for distributions and related spaces of test functions. Then we look at operations such as differentiation, translation, convolution and the Fourier transform. We will introduce the Sobolev spaces Hs(Rn) and Hs loc(X) and describe them in terms of Fourier transforms for tempered distributions. The material that follows will address questions such as

					• What does a generic distribution look like?
					what does a generic distribution look like:
					 Why are solutions to Laplace's equation always
					infinitely differentiable?
					 Which functions are the Fourier transform of a
					distribution with compact support?
					i e structure theorems elliptic regularity Paley-Wieper-
					Schwartz The final section of the
					course will be concerned with H"ormander's theory of
					oscillatory integrals.
NA	Advanced Probability	Professor Perla Sousi	NA	Brownian Motion, by Peter Morters	The aim of the course is to introduce students to
				and Yuval Perez	advanced topics in modern probability theory.
					The emphasis is on tools required in the rigorous
					analysis of stochastic processes, such as
					Brownian motion, and in applications where probability
					theory plays an important role.
NA	Functional Analysis	Dr. A. Zeok	NIA	Functional Analysis by Maltar Dudin	This source source many of the major theorems of
NA	Functional Analysis	DI. A. ZSak	NA .	and Murphy Gerard L C*-Algebras	abstract Europhical Analysis. It is intended to provide a
				and Marphy, Gerard J. C+-Algebras	foundation for several areas of pure and applied
				Press Inc. 1990	mathematics. We will cover the
				11033, IIIC., 1990	
					following topics:
					Hahn–Banach Theorems on the extension of linear
					functionals. Locally convex spaces.

		 Duals of the spaces Lp(μ) and C(K). The Radon–
		Nikodym Theorem and the Riesz
		Representation Theorem.
		 Weak and weak-* topologies. Theorems of Mazur,
		Goldstine, Banach–Alaoglu. Reflexivity
		and local reflexivity.
		• Hahn–Banach Theorems on separation of convex sets.
		Extreme points and the Krein–
		Milman theorem. Partial converse and the Banach-
		Stone Theorem.
		 Banach algebras, elementary spectral theory.
		Commutative Banach algebras and the
		_
		Gelfand representation theorem. Holomorphic
		functional calculus.
		 Hilbert space operators, C*-algebras. The Gelfand–
		Naimark theorem. Spectral theorem
		for commutative C*-algebras. Spectral theorem and
		Borel functional calculus for normal
		operators.
		Some additional topics time permitting. For example,
		uniform convexity and smooth-

					ness, ultraproducts, the Fr'echet–Kolmogorov Theorem, weakly compact subsets of L1(μ), the Eberlein– Smulian and the Krein– Smulian theorems, the Gelfand–Naimark–Segal con- struction.
NA	Analysis of PDE	Dr. Z. Wyatt	NA	Partial Differential Equations by Lawrence C. Evans	 The following concepts will be studied: well-posedness the Cauchy problem for general (non-linear) PDE characteristics Sobolev spaces elliptic boundary value problems (solvability and regularity) evolutionary problems (hyperbolic, parabolic and dispersive PDE)
NA	Approximation Theory	Professor A. Shadrin	NA	E. W. Cheney, Approximation theory, MgGrow-Hill, New-York, 1966	The course consists of three parts. • We start with the classical approximation by polynomials, which includes the Weierstrass theorem, positive linear operators, and direct and inverse theorems for trigonometric ap- proximation.

		We move then the emphasis to univariate splines
		which are piecewise polynomial functions.
		Here we study representation through the B-spline
		basis, spline interpolation theory and
		norm-minimization property of splines via orthogonal
		spline projector.
		 Finally, we make a tour into wavelets which will cover
		the multiresolution analysis and
		Daubechies orthogonal wavelets with a compact
		support.

Imperial College London

Course No.	Title	Instructor	Grade	Textbook	Subject Matter
MATH71035	Analytic Methods in PDE	Dr. A. Chandra	95.28%	Partial Differential Equations by Fritz John and Partial Differential Equations Jeffrey Rauch	 This module introduces some of the partial differential equations appearing in physics and geometry, as well as a number of classical techniques to study them analytically. Topics include — Review of ODE Theory (Picard's Theorem, Gronwall's inequality) — Theory of first order quasilinear PDE (Methods of Characteristics) — Cauchy-Kovalevskaya Theorem (with sketch of the proof) — Holmgren's uniqueness theorem (with proof via Cauchy-Kovalevskaya, examples) — Laplace's equation (fundamental solution, regularity of harmonic functions, maximum principle, Green's function for a ball)

					 General second order elliptic equations (Existence and Regularity Theory, Fredholm Alternative) Discussion of Schroedinger and Heat Equation (Schwartz space, Fourier techniques) Wave Equation (Energy estimate, domain of dependence, domain of influence, fundamental solution, solution via Fourier techniques, Duhamel's principle)
MATH60029	Functional Analysis	Dr. P.F. Rodriguez	99.79%	Rabindranath Sen, A First Course in Functional Analysis Theory and Applications	 An indicative list of topics is: Metric Linear Spaces and basic examples of topological spaces with non-metrisable topology. Minkowski and Hoelder Inequality. Existence of Hamel basis (axiom of choice 1st time). Normed vector spaces & example of not normed Frechet space (Schwartz test functions). Banach spaces. Classical Banach Spaces: l_p, c, c_0, L_p(µ), C(Ω), C^(m)(Ω). Closed Subspaces, Completness, Separability and Compactness in Classical Spaces. Schauder Basis. Continuous linear maps.

				-	
					Banach contraction mapping principle and applications
					to integral equations
					(Frdholm+Volterra). Finite dimensional spaces.
					The Hilbert space (orthonormal basis).
					The Riesz-Fisher Theorem
					The Hahn-Banach Theorem. (Banach Limit.)
					Dual spaces: Dual spaces of classical spaces. Reflexive
					Non-reflexive spaces.
					Baire Cathegory Theorem (axiom of choice again).
					Principle of Uniform Boundedness (Application to
					Fourier Series)
					Fourier Series).
					Open Mapping and Closed Graph Theorems.
					Compact operators.
					Hermitian operators and the Spectral Theorem.
					The module provides a general orientation in
					contemporary research problems in Mathematical
					Analysis includ- ing PDEs Stochastic Analysis
					Dynamical Systems and Quantum Mechanics
					Synamical Systems and Quantum mechanics.
MATH60028	Probability Theory	Professor I. Krasovsky	98.07%	Probability, A. N. Shiryaev	An indicative list of topics is:
					Probability spaces. Random variables: (Bernoulli,
					Rademacher, Gaussian variables with

		integration by parts formula). Probability Distributions.
		Basic probability inequalities: Jensen, Tshebychev. Tail of Distribution Estimates.
		Convergence in probability, in p-th moment, almost everywhere. 0-1 Law.
		Mutual Independence of Events/Random Variable and Vieta Formula. Product Probability
		Spaces. Conditional Expectations and Independence.
		Weak and Strong Laws of Large Numbers for Random
		Independent or Weakly Correlated Random Variables.
		Applications : [Probabilistic proof of Weierstrass Theorem, Monte Carlo Method for Large
		Dimensional Integration, Macmillan's Theorem, Infinitely Often Events: Decay and
		Recurrence of Human Civilisations, Normal Numbers]
		Weak Convergence & Characteristic Functions. Central Limit Theorem.
		Infinite Product of Bernoulli measures versus Gaussian measure.

MATH70054	Introduction to Stochastic	Professor G.A. Pavliotis	86.89%	Stochastic Processes and	The module is composed of the following sections:
	Differential Equations and			Applications Diffusion Processes, the	
	Diffusion Processes			Fokker-Planck and Langevin	I - Introduction
				Equations, Grigorios A. Pavliotis	 II - Elements of probability theory and of stochastic processes in continuous time III - Brownian motion and stochastic calculus
					IV - Stochastic integrals
					V - Stochastic differential equations
					VI - Applications to partial differential equations
					VII - Markov processes and invariant measures
MATH60017	Tensor Calculus and General	Dr. C. Ford	92.01%	'A First Course in General Relativity'	This module will cover the following topics:
	Relativity			(2nd Edition) by Bernard Schutz (Cam- bridge University Press).	1. Special Relativity
					2. Tensors in Special Relativity
					3. Tensors in General Coordinates Systems 4. Parallel
					Transport and Curvature
					5. General Relativity
					6. The Schwarzschild Spacetime
					7. Variational Methods
			1		

MATH60005	Optimisation	Dr. D. Kalise	95.18%	Introduction to Nonlinear	1. Mathematical preliminaries
				Optimization, by Amir Beck	2. Unconstrained optimization
					3. Gradient descent methods
					4. Linear and non-linear least squares problems
					5. Stochastic gradient descent
					6. Nature-inspired optimization
					7. Convex sets and functions
					8. Convex optimization problems and stationarity
					9. KKT conditions
					10. Duality
					11. Introduction to dynamic optimization and optimal control.
MATH60026	Methods for Data Science	Dr. B. Bravi	94.2%	The Elements of Statistical Learning	- Introduction to computational tools for data analysis
		Dr. P. Thomas		Prediction, Second Edition, Trevor	
				Hastie	- Introduction to exploratory data analysis;
					- Mathematical challenges in learning from data: optimisation;
					- Methods in Machine Learning: supervised and unsupervised; neural networks and deepl
					earning; graph-based data learning;

					- Machine learning in practice: application of commonly used methods to data science problems; Methods include: regressions, k-nearest neighbours, random forests, support vector machines, neural networks, principal component analysis, k-means, spectral clustering, manifold learning, network statistics, community detection.
MATH60030	Fourier Analysis and the Theory of Distributions	Professor I. Krasovsky	95.18%	A Guide to Distribution Theory and Fourier Transforms, by R.S. Strichartz	The module will assume familiarity with measure theory and functional analysis, especially L^p spaces and linear functionals. Indicative content: Orthogonal systems in infinite- dimensional Euclidean spaces, Bessel inequality, Parseval equality, general Fourier series, trigonometric basis in L_2[-Pi,Pi], convergence of trigonometric Fourier series, Fejer's theorem and applications, Fourier transform and its properties, application to solution of differential equations, Plancherel theorem, Laplace transform, linear functionals, distributions, basic properties of distributions and applications, Fourier transform for distributions.

MATH50008	Partial Differential Equations	Dr T Bertrand	94 61%	"Partial Differential Equations: An	The module is composed of the following sections:
	in Action	Bit it bertrand	54.01/0	introduction" W/ Strauss (W/ilov)	
					1) Introduction:
					models in applied mathematics and basic properties of
					PDEs;
					2) First-order PDEs:
					traffic flow equation, method of the characteristics,
					conservations laws, Burgers equation
					3) Second-order PDEs:
					classification of second-order PDEs, the classical trinity
					(Diffusion, Wave and Laplace
					equations), direct extensions (nonlinear diffusion
					equation), applications to musical
					instruments
					4) Further advanced topics in physical, life and social sciences:
					examples could include reaction-diffusion equation (wave propagation and pattern
					formation in biology), chemotaxis, swarming,
					population dynamics, financial markets and
					Black-Scholes equation, electrodynamics, fluid dynamics.
					5) A short introduction to numerical methods.

MATH50004	Multivariable Calculus and	Dr. A. Walton	93.31%	Differential and integral calculus.	1) Introduction to vector calculus: tensor notation and
	differential Equations		-	Volume II. Richard Courant	summation convention.
		Professor M.			
		Rasmussen			2) Differential operators: gradient, divergence and curl,
					operations with the gradient,
					Laplacian, scalar and vector fields;
					3) Elements of integration: line, surface and volume
					integrals, Green's theorem, divergence
					the same Course the same Staling the same
					theorem, Gauss theorem, stokes theorem,
					4) Curvilinear coordinates: implicit/inverse function
					theorems, line and volume elements.
					gradient, divergence, curl and Laplacian in curvilinear
					coordinates, changes of variables
					(jacobian);12
					5) Calculus of variations: Derivation of Euler-Lagrange
					Equation; short forms of the
					equation: extension to constrained problems and to
					higher dimensions; applications
					including catenary, brachistochrone. geodesics in
					various geometries.
					5 • • • • •
					Term 2: Part II - Ordinary Differential Equations:
					1) Ordinary differential equations and initial value
					problems;

					2) Existence and uniqueness of solutions of ODEs: Picard
					iterates, metric spaces and normed
					vector spaces Banach fived point theorem Disord
					vector spaces, Banach fixed point theorem, Picard-
					Lindelof theorem, maximal solution,
					general solutions and flows;
					3) Linear systems: algebraic structure of the space of
					solutions, matrix exponential function,
					planar linear systems, Jordan normal form, exponential
					growth behavior, variation of
					constants formula;
					4) Nonlinear systems: stability, invariant sets and limits
					sets, Lyapunov functions, Poincaré-
					Bendixson theorem.
	Linear Algebra and Numerical	Drofossor M. Liobock	00 060/	Linear Algebra, Sorge lang	This module is composed of two parts:
IVIATI II SUUUS		PTOTESSOF IVI. LIEDECK	00.00%	Linear Aigebra, Serge lang	This module is composed of two parts.
	Analysis	Dr. Sheehan Olver			- Part I - Linear Algebra in Term 1;
					- Part II - Numerical Analysis in Term 2;
					An indicative list of sections and topics covered in both
					parts of the module is as follows:
					Part I - Linear Algebra (term 1; 20 lectures):
					1) Direct sums and quotient spaces in vector spaces;
					invariance of these under a linear map

		and related matrices. Triangular form (over complex numbers) and Cayley - Hamilton.
		2) Factorization of polynomials (over fields); minimal polynomial of a linear map.
		3) Canonical forms: primary decomposition, cyclic decomposition, rational and Jordan
		canonical form (proofs not examinable).
		4) Bilinear maps and forms; inner products. Examples. Gram - Schmidt again. Quadratic
		forms. Annihilators. Dual spaces.
		Part II - Numerical Analysis (term 2):
		1) Brief review of Inner product spaces, Gram-Schmidt, Cauchy-Schwarz inequality.
		2) Floating point arithmetic and stability of algorithms.
		3) Numerical Linear Algebra: orthogonal matrices, positive definite matrices, Cholesky
		factorization.
		4) Orthogonal Polynomials: three term recurrence relationship, Chebyshev polynomials.
		5) Polynomial Interpolation: Lagrange and Chebyshev interpolation, existence and
		uniqueness, divided differences, error analysis.

					6) Numerical Integration and Differentiation.Approximation to ODEs.7) Implementation of algorithms in e.g. Julia, Python or Matlab
MATH50006	Lebesgue Measure and Integration	Dr. P. F. Ridriguez	95.08%	Measures, Integrals and Martingales 2nd Edition, Rene Schilling	An indicative list of sections and topics is:Motivation: Drawbacks of the Riemann integral, Limits of functions, Length and area, TheFundamental Theorem of Calculus, Measures of sets in R^d,Measure Theory: Abstract measure theory: Motivation, basic definitions of measure spaces and measures.Lebesgue Measure in R^d: Volume of rectangles and cubes, The exterior measure, properties, Lebesgue measurable sets, countable additivity. Properties of the Lebesgue measure, Regularity, Invariance, σ-algebras and Borel sets, Non-measurable set.Measurable functions: Definitions and equivalent

		Approximation by simple functions and step functions,
		Egoroff's and Lusin's theorems.
		Lebesgue integration: Definition using bounded
		functions on sets of finite measure,
		Riemann integrable functions are Lebesgue integrable,
		Integrable functions as a normed
		vector space, L_p(R^d), dense subsets, Completeness,
		Fatou's Lemma, monotone
		convergence theorem uniform integrability. Vitali's
		The second Subject of the second Taxaellike
		Theorem, Fubini's and Tonelli's
		Theorems statements and proofs
		neorenis, statements and proofs.
		Differentiation and Integration: Differentiation of the
		Integral, statement of Lebesgue
		differentiation theorem, Differentiation of functions,
		Functions of bounded variation,
		properties, characterisation, Bounded variation implies
		differentiable a.e.
		Absolute continuity of measures, decomposition
		theorems by Jordan, Hahn and Lebesgue,
		Padan Nikadum Theorem

MATH50005	Groups and Rings	Professor A. A. Skorobogatov Professor T. Coates	92.88%	Rings, Fields and Groups by R.B.J.T. Al- lenby, second edition (1991).	An indicative list of sections and topics is: Groups: Further examples. Normal subgroups, quotient groups and the 1st isomorphism theorem. Finitely generated abelian groups (via Smith normal form). Group actions, orbit- stabiliser and simple applications. Rings: Definitions and examples (mainly commutative). Units and zero-divisors. Integral domains, Euclidean domains and unique factorisation. Ideals and quotient rings, first isomorphism theorem. Characteristic of an ID; construction of finite fields.
MATH50010	Probability for Statistics	Dr. C. Hallsworth	93.98%	Probability and random processes, by Grimmett, Geoffrey	An indicative list of sections and topics is: - Probability spaces - The Borel sigma algebra - Countable additivity and the continuity property - Univariate and multivariate random variables - Transformations of multivariate random variables - Modes of convergence of random variables - Laws of large numbers

					- Joint moment generating functions
					- Central limit theorem (including proof)
					- Random walks (1D)
					- Discrete time Markov chains with finite state space
					- Transition probabilities and matrices
					- Chapman-Kolmogorov equations
					- Expected hitting times and probabilities
					- Classification of states
					- Limiting and stationary distributions
MATH40005	Probability and Statistics	Professor A. Veraart	91.28%	"A First Course in Probability",	I - Interpretations of probability: limiting frequency;
				Sheldon Ross, Collier Macmillan,	classical (symmetry between equally likely outcomes);
		Dr. D. Bodenham		1988	subjective (degree of personal belief)
					II - Counting: multiplication principle; binomial
					coefficients; the inclusion-exclusion principle stars and
					bars arguments
					III - Formal probability: probability axioms; conditional
					probability; Bayes' theorem; independence
					IV - Random variables: mass and density functions;
					common discrete and continuous distributions;
					transformations of random variables; expectation and
					variance; probability and moment generating functions
					V - Multivariate random variables: joint mass and
					density functions; independence; covariance
					VI - Conditional distribution: conditional probability
					mass function; conditional density; conditional

					expectation; law of total expectation VII - Properties of random samples: a statistic and its sampling distribution; estimators, moments, maximum likelihood; exploratory data analysis VIII - Resampling methods: the bootstrap IX - Linear models: simple linear regression (continuous predictors); R^2; properties of residuals X - Hypothesis testing: Fisher's exact test; Student's t- test XI - Study design: observational vs experimental comparisons; confounding and bias Statistics: VII - Properties of random samples: a statistic and its sampling distribution; estimators, moments, maximum likelihood; exploratory data analysis VIII - Resampling methods: the bootstrap IX - Linear models: simple linear regression (continuous predictors); R^2; properties of residuals X - Hypothesis testing: Fisher's exact test; Student's t- test XI - Study design: observational vs experimental comparisons; confounding and bias
MATH40003	Linear Algebra and Groups	Dr. C. Kestner Professor D. Evans	83.05%	"Linear Algebra", R B J T Allenby, Edward Arnold, 1995, and A first course in abstract algebra, by Fraleigh, John B.	Linear Algebra: (i) Systems of linear equations: Equivalent systems; the augmented matrix; elementary row operations; Gaussian elimination. Examples and geometric interpretation (rotations and reflections in 2- and 3- dimensions). The theorem that a homogeneous system

		of linear equations with more unknowns than equations
		has a non-trivial solution. Brief discussion of fields.
		(ii) Matrix Algebra (over a field): Addition and
		multiplication of matrices. Matrices as linear
		transformations. Connection with solving linear
		equations. The inverse of a square matrix. Singular
		matrices and non-invertibility. Method for inverting a
		square matrix.
		(iii) Vector spaces (over a field): axioms and simple
		deductions from them; key examples (including function
		spaces); subspaces; linear independence and linear
		span; bases and dimension; dimension of subspaces;
		modular law. Applications and computations.
		(iv) Linear transformations: Examples; kernel and image;
		rank + nullity Matrix of a linear transformation with
		respect to given bases. Geometric examples
		(projections and rotations). Change of basis formula for
		linear transformations.
		(v) Determinants: review of 2×2 and 3×3 cases.
		Definition of general case by 1-st row expansion.
		Properties and equivalent ways of computing
		determinants. Special examples (including
		Vandermonde). det(AB) = det(A)det(B) and det(A) =
		det(A^T). Inverting matrices by using determinants.
		(vi) Eigenvalues and eigenvectors; Characteristic
		polynomial and invariance under change of basis;
		computations; diagonalisability and applications.
		Orthonormal bases and Gram- Schmidt.
		Diagonalisability of symmetric matrices over R and
		applications.

					Group theory: Groups: Axioms and simple deductions from them; subgroups, orders of elements. Examples (cyclic, symmetric groups, general linear groups). Cosets; Lagrange's theorem and applications. Homomorphisms and isomorphisms (straightforward examples). Cycle structure, order and sign of permutations. Dihedral groups.
MATH50002	Analysis 2	Dr. D. Cheraghi Professor A. Laptev	95.75%	Rudin, Principles of Mathematical Analysis	An indicative list of sections and topics is: Term 1; 20 lectures: Higher dimensional derivatives: Definition of higher dimensional derivative, chain rule. Directional derivatives, partial derivatives, Df(p) in terms of partial derivatives, Higher derivatives, higher dimensional Taylor's theorem, Symmetry of mixed partials (statement of results). Inverse function theorem, implicit function theorem. Metric spaces: Definition, examples. Topologically equivalent metrics, isometries, Lipschitz maps, Open sets, bounded sets, examples, unions, intersections, Continuity in terms of open

		sets, Closed sets, closure, limit points, Separable metric
		spaces, ropological spaces.
		Compact spaces: Definition in terms of open covers,
		Basic features, existence of convergent
		sub-sequences, Continuous maps and compact sets,
		Sequential compactness.
		Completeness: Definition, examples, Point-wise
		convergence and uniform convergence in
		function spaces, Incompleteness of C(X), Continuity of
		the integration on function spaces,
		Arzela-Ascoli, Fixed point theorem.
		Connectedness: Definition, examples, Continuous image
		of a connected set.
		Term 2: 20 lectures, Complex Analysis:
		Holomorphic Functions: Definition using derivative,
		Cauchy-Riemann equations,
		Polynomials, Power series,9
		Rational functions, Moebius transformations,
		Cauchy's Integral Formula: Complex integration along
		curves, Goursat's theorem, Local
		existence of primitives and Cauchy's theorem in a disc,
		Evaluation of some integrals,
	•	

					Homotopies and simply connected domains, Cauchy's
					integral formulas.
					Applications of Cauchy's integral formula: Morera's
					theorem, Sequences of holomorphic
					functions, Holomorphic functions, defined in terms of
					integrals, Schwarz reflection principle.
					Meromorphic Functions: Zeros and poles Laurent
					series. The residue formula Singularities
					series. The residue formula, singularities
					and meromorphic functions, The argument principle
					and applications. The complex
					logarithm.
					Harmonic functions: Definition, and basic properties,
					Maximum modulus principle.
					Conformal Manufactor Definitions Descentation of
					Conformal Mappings: Definitions, Preservation of
					Angles, Statement of the Riemann
					manning theorem
MATH40002	Analysis 1	Dr. A. Chandra	96.26%	"Mathematical Analysis", K G	I Real Numbers: The archimedean property, and density
				Binmore, Cambridge University	of Q in R; The completeness axiom; Sup and Inf, and
		Dr. S. Sivek		Press, 1977	basic properties; Decimal Expansions; Countability and
					uncountability
					II Real and complex sequences: Convergence and
					Divergence: the sandwich test: Sub- sequences
					monotonic sequences [limsun and liminf] Bolzano-

		Weierstrass Theorem, Cauchy sequences and the
		general principle of convergence.
		III - Real and complex series: Convergent and absolutely
		convergent series; Comparison test for non-negative
		series and for absolutely convergent series; Alternating
		test series; Rearranging absolutely convergent series
		Radius of convergence of power series; Exponential
		series.
		IV - Continuity of real and complex functions: Left and
		right limits and continuity for real and complex
		functions; Sequential criterium for continuity; uniform
		continuity; Compact sets and extrema of real valued
		continuous functions; Inverse function theorem for
		strictly monotonic real functions on an interval.
		V - Differentiability: Definitions and examples; Left and
		right derivative, properties of derivatives. Higher
		derivatives, convexity; Differentiation of series.
		VI - Integrability: Integral for step functions; Definition
		of Riemann-Darboux integral and examples of
		integrable/non-integrable functions; Elementary
		properties; The Mean Value Theorem for Integrals; The
		Fundamental theorem of Calculus; Integration by parts,
		substitution.

MATH40004	Calculus and Applications	Professor D.	89.14%	Calculus, by James Stuart	I - Differentiation: First principles, differentiability;
		Papageorgiou			Logarithmic and implicit differentiation; Higher
					derivatives; Leibniz's formula; Stationary points and
					points of inflexion.
					II - Graphs: Curve sketching; Parametric representation;
					Polar coordinates; Complex graphs. III - Series:
					Convergence of Infinite Series; Maclaurin and Taylor
					expansions; The Mean Value Theorem; Taylor's
					Theorem with remainder; Convergence of Infinite
					Power Series; L'Hopital's rule; Complex power series.
					IV - Integration: The Riemann integral; Fundamental
					theorem of calculus; Indefinite integrals; Integration by
					parts and substitution; Partial fractions; Differentiating
					under the integral; Improper integrals;Integrals over
					curves, areas and volumes with examples including
					moments of inertia.
					V - Fourier Series: orthonormal systems; periodic
					functions; even and odd functions; full- range and half-
					range series; the Gibbs phenomenon; Parseval's
					theorem; integration and differentiation of Fourier
					series; exponential form.
					VI - Fourier Transforms: Exponential, cosine and sine
					transforms; Elementary properties; Convolution
					theorem; Energy theorem.
					VII - Ordinary Differential Equations: Introduction to
					ODEs: definitions and notations; Solutions for 1st and
					some 2nd order ODEs, linear ODEs; Separable,
					homogeneous and linear equations; Special cases;
					Linear higher order equations with constant
					coefficients; Systems of constant-coefficient linear
					ODEs; Qualitative Analysis of linear ODEs: Phase plane

				Analysis, stability of systems; Qualitative Analysis of nonlinear ODEs: Bifurcation Analysis. Including numerous examples from Newtonian dynamics such as motion point particle in an external potential and oscillatory motion. VIII - Introduction to Multivariable Calculus: General properties of functions of several variables; Partial derivatives and total derivatives; Second order derivatives and statement of condition for equality of mixed partial derivatives; Taylor expansions; Chain rule, change of variables, including planar polar coordinates.
MATH40006	Introduction to Computation	Dr. P. Ramsden	91.6%	 1) Introduction The relationship between computing and mathematics - Programming languages - Python: versions, distributions and interfaces - Jupyter notebooks and markdown - Git and Github - Calculations - Variables and assignment - The math and cmath modules 2) Core data types and algorithms Introduction to functions - Native data types in Python - Simple native data structures in Python - Iteration, branching and recursion - Comprehensions and filtering - Iterable objects in loops and comprehensions - Further functions - Algorithms and efficiency 3) Modules, further data structures and files The NumPy module - The matplotlib module and the pyplot submodule - Data analysis using NumPy and

				matplotlib - User-defined modules - Further data
				structures - File I/O
	An Introduction to Applied	Brofossor D. Crowdy	01 59/	1) Structures in equilibrium: trusses (example of a
IVIA1 H40007	Mathematics	Professor D. Crowuy	91.5%	directed graph) force balance and equilibrium
	Wathematics			2) Edge gode incidence metric constitutive metric and
				2) Edge-hode incidence matrix, constitutive matrix and
				stiffness matrix
				3) Equilibrium equations with external forces
				4) Applied linear algebra for solving the equilibrium
				equations using Gauss elimination
				eigenvalues /eigenvectors
				5) Equilibrium as energy minimization: connection with
				least-square problems
				6) Description of analogous systems: e.g. Kirchhoff's
				of Description of analogous systems. e.g. Kitchnon's
				equations, near transfer and other transport processes
				7) Continuous limit in the one-dimensional case
				8) Introduction to eigenfunctions (with the example of a
				Sturm-Liouville system) 9) Minimum principles and
				calculus of variations in 1D
				10) Continuous limit in the two-dimensional case
				11) Stokes/divergence theorems (as motivated by the
				nhysical problems)
				12) Laplace's equation and 2D potential theory
				13) Characteristics coordinates of Lanlace's equation
				and complex variables
				14) Introduction to analytic functions
				15) Conformal manning and Fourier series
				16) Hall effect in transport theory

MATH40001	Introduction to University	Professor K. Buzzard	Pass	Sets and Logic
	Mathematics			– Notation and basic results for sets: \in , \subseteq etc; de
				Morgan.
				 Propositions are true-false statements.
				– Logical notation: \forall , \land , \neg , = \Rightarrow etc
				 Truth tables for basic logical connectives.
				– Basic proof strategies: direct, induction, contradiction,
				contrapositive.
				 Basic examples of proofs.
				 Negation of "for all x, there exists y such that" etc.
				Integers
				– Induction
				 Division with remainder; Euclidean algorithm – Prime
				numbers, infinitude of primes
				 – Fundamental Theorem of Arithmetic
				– Modular arithmetic
				 – Fermat's Little Theorem
				Functions and Equivalence relations
				 – Functions (injectivity, surjectivity and bijectivity);
				composition; existence of an inverse.
				 Equivalence relations and equivalence classes
				Real Numbers
				 Theory of inequalities, built from an axiomatic
				viewpoint.
				 Axioms and basic proofs in the theory of ordered
				fields.
				Vectors and Geometry

		– Vector algebra: Manipulation (addition, substraction)
		of vectors in 2D and 3D spaces
		 Geometry of vectors: Definition of the dot-product,
		Cauchy-Schwarz inequality and Triangle inequality,
		angles between vectors.
		 Systems of coordinates (Cartesian, Polar, Cylindrical
		and Spherical)
		 Definition of the cross-product (including as a
		determinant) – Right-handedness, scalar triple product,
		vector triple product
		 – 2D and 3D elementary geometry: equations of lines
		and planes – Relations with distances, areas and
		volumes.